
Scheduling in Xen: Present and Near Future

Dario Faggioli
dario.faggioli@citrix.com

Cambridge – 27th of May, 2015



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Introduction

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 2 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Welcome

I Hello, my name is Dario

I I’m with Citrix since 2011 (in the Xen Platform Team)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 3 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Welcome (cont.)

Not often around here in 101... Because I work from home!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 4 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

A bit of a Background (Check ;-)

I Computer Engineering MSc → Ph.D on Real-Time Scheduling

I Scheduling already... but OS scheduling!

I What about virtualization:

“I’m not a virtualization kind of guy.
I think virtualization is evil”[*]

[*] a well known benevolent dictator

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 5 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

A bit of a Background (Check ;-)

I Computer Engineering MSc → Ph.D on Real-Time Scheduling

I Scheduling already... but OS scheduling!

I What about virtualization:

“I’m not a virtualization kind of guy.
I think virtualization is evil”[*]

[*] a well known benevolent dictator

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 5 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Me and Scheduling

I Not too good at nonsensical math

I Focused on implementing Real-Time scheduling algo-s in
real-world OSes, such as Linux

I Tried to implement Earliest Deadline First (EDF) algorithm
and have it merged upstream

I Attempted by ’academicians’ a few times, just to blame the
Linux community upon failure!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 6 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Me and Scheduling (cont.)

I Real-Time scheduling: “a solution to the wrong problem”:
I most of the time, there even is no overbooking
I when there’s overbooking, not all activities are equally

important
I I/O is a bigger issue

I And in fact, one day in Boston, while presenting my work at
the 2010 Kernel Summit...

“Real-Time is bul1$*it!”[*]

[*]the same well known benevolent dictator as before

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 7 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Me and Scheduling (cont.)

I Real-Time scheduling: “a solution to the wrong problem”:
I most of the time, there even is no overbooking
I when there’s overbooking, not all activities are equally

important
I I/O is a bigger issue

I And in fact, one day in Boston, while presenting my work at
the 2010 Kernel Summit...

“Real-Time is bul1$*it!”[*]

[*]the same well known benevolent dictator as before

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 7 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Me and Scheduling (cont.)

I Real-Time scheduling: “a solution to the wrong problem”:
I most of the time, there even is no overbooking
I when there’s overbooking, not all activities are equally

important
I I/O is a bigger issue

I And in fact, one day in Boston, while presenting my work at
the 2010 Kernel Summit...

“Real-Time is bul1$*it!”[*]

[*]the same well known benevolent dictator as before

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 7 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Scheduling in Xen’s World

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 8 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Scheduling and Xen

I There is pretty much always overbooking

I All activities (i.e., all VMs) are (or at least could be) equally
important

...

I I/O is still more important!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 9 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Scheduling and Xen

I There is pretty much always overbooking

I All activities (i.e., all VMs) are (or at least could be) equally
important

...

I I/O is still more important!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 9 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Scheduling and Xen

I There is pretty much always overbooking

I All activities (i.e., all VMs) are (or at least could be) equally
important

...

I I/O is still more important!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 9 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Wait a Second...

We are special!

I Xen is not a GPOS which can be turned into an hypervisor

I Xen’s scheduler needs to deal only with VMs’ vCPUs

“I already told you, this isn’t ever going to happen.

You do NOT put a for each online cpu() loop in the

middle of schedule().

You also do not call stop one cpu(migration cpu stop)

in schedule to force migrate the task you just

scheduled to away from this cpu.

That’s retarded.

Nacked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>”

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 10 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Wait a Second...

We are special!

I Xen is not a GPOS which can be turned into an hypervisor

I Xen’s scheduler needs to deal only with VMs’ vCPUs

“I already told you, this isn’t ever going to happen.

You do NOT put a for each online cpu() loop in the

middle of schedule().

You also do not call stop one cpu(migration cpu stop)

in schedule to force migrate the task you just

scheduled to away from this cpu.

That’s retarded.

Nacked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>”

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 10 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Wait a Second... (cont.)

Our I/O needs (CPU) scheduling!

Xen Hypervisor

Hardware

device model
(qemu)

toolstack

Control Domain
NetBSD or Linux

Hardware
Drivers

I/O Devices CPU Memory

Paravirtualized
(PV)

Domain:
NetBSD or Linux

netback
blkback

netfront
blkfront

Driver Domain

netback
blkback

Xen Hypervisor

Hardware

device model
(qemu)

toolstack

Control Domain
NetBSD or Linux

Hardware
Drivers

I/O Devices CPU Memory

Paravirtualized
(PV)

Domain:
NetBSD or Linux

Fully 
Virtualized

(HVM)
Domain:
Windows,
FreeBSD...

netback
blkback

netfront
blkfront

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 11 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Xen’s Scheduler Features

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 12 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Hard and Soft Affinity

I pinning: you can run there and only there!
#xl vcpu-pin vm1 0 2

I hard affinity: you can’t run outside of that spot
# xl vcpu-pin vm1 all 8-12

I soft affinity: you can’t run outside of that spot and,
preferably, you should ru there
# xl vcpu-pin vm1 all - 10,11

Same achieved with cpus= and cpus soft= in config file.

cpus= or cpus soft= in config file control where memory is
allocated

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 13 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Hard and Soft Affinity (cont.)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 14 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

for Dom0

I dom0 max vcpu: makes sense

I dom0 vcpus pin: bleah!!
I dom0 nodes: new parameter. Place Dom0’s vCPUs and

memory on one or more nodes
I strict (default) uses hard affinity
I relaxed uses soft affinity

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 15 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

More about NUMA

Automatic placement policy in libxl (since Xen 4.2)

I acts at domain creation time
I easy to tweak (at libxl build time, for now) heuristics:

I use the smallest possible set of nodes (ideally, just one)
I use the (set of) node(s) with fewer vCPUs bound to it ([will]

consider both hard and soft affinity)
I use the (set of) node(s) with the most free RAM (mimics the

“worst fit”algorithm)

Example:
4 GB VM, 6 GB free on node0, 8 GB free on node1
Bound vCPUs: 12 to node0, 16 to node1 =⇒ use node0
Bound vCPUs: 8 to node0, 8 to node1 =⇒ use node1

Coming: node distances, IONUMA, vNUMA

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 16 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

More about NUMA

Automatic placement policy in libxl (since Xen 4.2)

I acts at domain creation time
I easy to tweak (at libxl build time, for now) heuristics:

I use the smallest possible set of nodes (ideally, just one)
I use the (set of) node(s) with fewer vCPUs bound to it ([will]

consider both hard and soft affinity)
I use the (set of) node(s) with the most free RAM (mimics the

“worst fit”algorithm)

Example:
4 GB VM, 6 GB free on node0, 8 GB free on node1

Bound vCPUs: 12 to node0, 16 to node1 =⇒ use node0
Bound vCPUs: 8 to node0, 8 to node1 =⇒ use node1

Coming: node distances, IONUMA, vNUMA

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 16 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

More about NUMA

Automatic placement policy in libxl (since Xen 4.2)

I acts at domain creation time
I easy to tweak (at libxl build time, for now) heuristics:

I use the smallest possible set of nodes (ideally, just one)
I use the (set of) node(s) with fewer vCPUs bound to it ([will]

consider both hard and soft affinity)
I use the (set of) node(s) with the most free RAM (mimics the

“worst fit”algorithm)

Example:
4 GB VM, 6 GB free on node0, 8 GB free on node1
Bound vCPUs: 12 to node0, 16 to node1 =⇒ use node0

Bound vCPUs: 8 to node0, 8 to node1 =⇒ use node1

Coming: node distances, IONUMA, vNUMA

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 16 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

More about NUMA

Automatic placement policy in libxl (since Xen 4.2)

I acts at domain creation time
I easy to tweak (at libxl build time, for now) heuristics:

I use the smallest possible set of nodes (ideally, just one)
I use the (set of) node(s) with fewer vCPUs bound to it ([will]

consider both hard and soft affinity)
I use the (set of) node(s) with the most free RAM (mimics the

“worst fit”algorithm)

Example:
4 GB VM, 6 GB free on node0, 8 GB free on node1
Bound vCPUs: 12 to node0, 16 to node1 =⇒ use node0
Bound vCPUs: 8 to node0, 8 to node1 =⇒ use node1

Coming: node distances, IONUMA, vNUMA

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 16 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

More about NUMA

Automatic placement policy in libxl (since Xen 4.2)

I acts at domain creation time
I easy to tweak (at libxl build time, for now) heuristics:

I use the smallest possible set of nodes (ideally, just one)
I use the (set of) node(s) with fewer vCPUs bound to it ([will]

consider both hard and soft affinity)
I use the (set of) node(s) with the most free RAM (mimics the

“worst fit”algorithm)

Example:
4 GB VM, 6 GB free on node0, 8 GB free on node1
Bound vCPUs: 12 to node0, 16 to node1 =⇒ use node0
Bound vCPUs: 8 to node0, 8 to node1 =⇒ use node1

Coming: node distances, IONUMA, vNUMA

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 16 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Workin’ On

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 17 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR

Intel Platform Shared Resource Monitoring (PSR):
I Cache Monitoring Technology (CMT)
I Memory Bandwidth Monitoring (MBM)

Tells how much cache/mem. bandwidth is being consumed by a
certain ’activity’ running on a CPU. E.g., about CMT:

I https://software.intel.com/en-us/blogs/2014/06/18/

benefit-of-cache-monitoring

I https://software.intel.com/en-us/blogs/2014/12/11/

intels-cache-monitoring-technology-use-models-and-data

Cool, eh? Oh, well:
I moderately accurate and fast:

hey, it’s done in hardware after all! :-)
I limited in scope and not very flexible:

heh, it’s done in hardware after all! :-(

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 18 / 33

https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data


Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR

Intel Platform Shared Resource Monitoring (PSR):
I Cache Monitoring Technology (CMT)
I Memory Bandwidth Monitoring (MBM)

Tells how much cache/mem. bandwidth is being consumed by a
certain ’activity’ running on a CPU. E.g., about CMT:

I https://software.intel.com/en-us/blogs/2014/06/18/

benefit-of-cache-monitoring

I https://software.intel.com/en-us/blogs/2014/12/11/

intels-cache-monitoring-technology-use-models-and-data

Cool, eh? Oh, well:
I moderately accurate and fast:

hey, it’s done in hardware after all! :-)
I limited in scope and not very flexible:

heh, it’s done in hardware after all! :-(

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 18 / 33

https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data


Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR (cont.)

Current CMT support:

I in Linux (and hence KVM): cache usage stats for tasks and
group of tasks

I in Xen: cache usage stats for domains (http://wiki.
xenproject.org/wiki/Intel_Cache_Monitoring_Technology)

Can it be used in more clever ways, e.g., in the scheduler?

I in Linux: Yes... as soon as hell freezes!

I in Xen: Yes! (Or, at least, nothing stops us trying)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 19 / 33

http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology
http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology


Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR (cont.)

Current CMT support:

I in Linux (and hence KVM): cache usage stats for tasks and
group of tasks

I in Xen: cache usage stats for domains (http://wiki.
xenproject.org/wiki/Intel_Cache_Monitoring_Technology)

Can it be used in more clever ways, e.g., in the scheduler?

I in Linux: Yes... as soon as hell freezes!

I in Xen: Yes! (Or, at least, nothing stops us trying)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 19 / 33

http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology
http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology


Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR (cont.)

Current CMT support:

I in Linux (and hence KVM): cache usage stats for tasks and
group of tasks

I in Xen: cache usage stats for domains (http://wiki.
xenproject.org/wiki/Intel_Cache_Monitoring_Technology)

Can it be used in more clever ways, e.g., in the scheduler?

I in Linux: Yes... as soon as hell freezes!

I in Xen: Yes! (Or, at least, nothing stops us trying)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 19 / 33

http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology
http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology


Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR (cont.)

Current CMT support:

I in Linux (and hence KVM): cache usage stats for tasks and
group of tasks

I in Xen: cache usage stats for domains (http://wiki.
xenproject.org/wiki/Intel_Cache_Monitoring_Technology)

Can it be used in more clever ways, e.g., in the scheduler?

I in Linux: Yes... as soon as hell freezes!

I in Xen: Yes! (Or, at least, nothing stops us trying)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 19 / 33

http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology
http://wiki.xenproject.org/wiki/Intel_Cache_Monitoring_Technology


Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR (cont. II)

Biggest limitations:

I num. of activitieas that can be monitored is limited

I applies to L3 cache only, for now

What would be desirable:

I per-vCPU granularity =⇒ No! Too few monitoring IDs

I L2 occupancy/bandwidth stats, for helping intra-socket
scheduling decisions =⇒ No! Only L3

What I’m thinking to:
I use one monitoring ID per pCPU. This gives:

I how ’cache hungry’ a pCPU is being
I how much free chace there is on each socket/NUMA node

I sample periodically and use for mid-level load balancing
decisions

I ... ideas welcome!!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 20 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR (cont. II)

Biggest limitations:

I num. of activitieas that can be monitored is limited

I applies to L3 cache only, for now

What would be desirable:

I per-vCPU granularity =⇒ No! Too few monitoring IDs

I L2 occupancy/bandwidth stats, for helping intra-socket
scheduling decisions =⇒ No! Only L3

What I’m thinking to:
I use one monitoring ID per pCPU. This gives:

I how ’cache hungry’ a pCPU is being
I how much free chace there is on each socket/NUMA node

I sample periodically and use for mid-level load balancing
decisions

I ... ideas welcome!!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 20 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Exploiting Intel PSR (cont. II)

Biggest limitations:

I num. of activitieas that can be monitored is limited

I applies to L3 cache only, for now

What would be desirable:

I per-vCPU granularity =⇒ No! Too few monitoring IDs

I L2 occupancy/bandwidth stats, for helping intra-socket
scheduling decisions =⇒ No! Only L3

What I’m thinking to:
I use one monitoring ID per pCPU. This gives:

I how ’cache hungry’ a pCPU is being
I how much free chace there is on each socket/NUMA node

I sample periodically and use for mid-level load balancing
decisions

I ... ideas welcome!!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 20 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2

Credit2 scheduler, authored by George, is still in experimental
status.

Take it out from there!!

What’s missing:

I SMT awareness (done, missing final touches)

I hard and soft affinity support (someone working on it)

I tweaks and optimization in the load balancer (someone
looking at it)

I cap and reservation (!!!)

Plan: mark it as !experimantal for 4.6, make it default for 4.7
(let’s see...)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 21 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2

Credit2 scheduler, authored by George, is still in experimental
status.

Take it out from there!!

What’s missing:

I SMT awareness (done, missing final touches)

I hard and soft affinity support (someone working on it)

I tweaks and optimization in the load balancer (someone
looking at it)

I cap and reservation (!!!)

Plan: mark it as !experimantal for 4.6, make it default for 4.7
(let’s see...)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 21 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2

Credit2 scheduler, authored by George, is still in experimental
status.

Take it out from there!!

What’s missing:

I SMT awareness (done, missing final touches)

I hard and soft affinity support (someone working on it)

I tweaks and optimization in the load balancer (someone
looking at it)

I cap and reservation (!!!)

Plan: mark it as !experimantal for 4.6, make it default for 4.7
(let’s see...)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 21 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2

Credit2 scheduler, authored by George, is still in experimental
status.

Take it out from there!!

What’s missing:

I SMT awareness (done, missing final touches)

I hard and soft affinity support (someone working on it)

I tweaks and optimization in the load balancer (someone
looking at it)

I cap and reservation (!!!)

Plan: mark it as !experimantal for 4.6, make it default for 4.7
(let’s see...)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 21 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:
I Once upon a time, there was the O(1) scheduler, then...
I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:
I CSCHED PRI TS BOOST sort of falls into this
I any addition, at this stage, would fall into this (e.g., load

balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:

I Once upon a time, there was the O(1) scheduler, then...
I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:
I CSCHED PRI TS BOOST sort of falls into this
I any addition, at this stage, would fall into this (e.g., load

balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:
I Once upon a time, there was the O(1) scheduler, then...

I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:
I CSCHED PRI TS BOOST sort of falls into this
I any addition, at this stage, would fall into this (e.g., load

balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:
I Once upon a time, there was the O(1) scheduler, then...
I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:
I CSCHED PRI TS BOOST sort of falls into this
I any addition, at this stage, would fall into this (e.g., load

balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:
I Once upon a time, there was the O(1) scheduler, then...
I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:

I CSCHED PRI TS BOOST sort of falls into this
I any addition, at this stage, would fall into this (e.g., load

balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:
I Once upon a time, there was the O(1) scheduler, then...
I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:
I CSCHED PRI TS BOOST sort of falls into this

I any addition, at this stage, would fall into this (e.g., load
balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:
I Once upon a time, there was the O(1) scheduler, then...
I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:
I CSCHED PRI TS BOOST sort of falls into this
I any addition, at this stage, would fall into this (e.g., load

balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont.)

Complexity:

I in Credit we have:
I credits and weights
I 2 priorities
I oh, actually, it’s 3
I active and non active state of vCPUs
I flipping between active/non-active means flipping between

burning/non-burning credits, which in turns means wandering
around among priorities

I in Credit2 we have:
I credits burned basing on weights

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 23 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont.)

Complexity:
I in Credit we have:

I credits and weights
I 2 priorities
I oh, actually, it’s 3
I active and non active state of vCPUs
I flipping between active/non-active means flipping between

burning/non-burning credits, which in turns means wandering
around among priorities

I in Credit2 we have:
I credits burned basing on weights

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 23 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont.)

Complexity:
I in Credit we have:

I credits and weights
I 2 priorities
I oh, actually, it’s 3
I active and non active state of vCPUs
I flipping between active/non-active means flipping between

burning/non-burning credits, which in turns means wandering
around among priorities

I in Credit2 we have:
I credits burned basing on weights

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 23 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. II)

Complexity (II):
I in Credit we have:

I credits-per-msec, timeslice, ticks-per-timeslice
I can we change the timeslice? Yes, of course... in theory!

I in Credit2 we have:
I no timeslice at all (just min-timer, max-timer)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 24 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. II)

Complexity (II):
I in Credit we have:

I credits-per-msec, timeslice, ticks-per-timeslice
I can we change the timeslice? Yes, of course... in theory!

I in Credit2 we have:
I no timeslice at all (just min-timer, max-timer)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 24 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. II)

Complexity (an example): start time

in Credit we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time += (credits * MILLISECS(1)) / CSCHED CREDITS PER MSEC;

scurr->start time -= now;

snext->start time += now;

snext->start time += now;

in Credit2 we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time = now;

delta = now - svc->start time;

svc->start time = now;

snext->start time = now;

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 25 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. II)

Complexity (an example): start time

in Credit we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time += (credits * MILLISECS(1)) / CSCHED CREDITS PER MSEC;

scurr->start time -= now;

snext->start time += now;

snext->start time += now;

in Credit2 we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time = now;

delta = now - svc->start time;

svc->start time = now;

snext->start time = now;

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 25 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. II)

Complexity (an example): start time

in Credit we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time += (credits * MILLISECS(1)) / CSCHED CREDITS PER MSEC;

scurr->start time -= now;

snext->start time += now;

snext->start time += now;

in Credit2 we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time = now;

delta = now - svc->start time;

svc->start time = now;

snext->start time = now;

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 25 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. III)

Scalability:

I in Credit
I periodic runqueue sorting. Freezes a runqueue
I periodic accounting. Freezes the whole scheduler!

I in Credit2 we have:
I “global”lock only for load balancing

(looking at improving it)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 26 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. III)

Scalability:
I in Credit

I periodic runqueue sorting. Freezes a runqueue
I periodic accounting. Freezes the whole scheduler!

I in Credit2 we have:
I “global”lock only for load balancing

(looking at improving it)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 26 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why? (cont. III)

Scalability:
I in Credit

I periodic runqueue sorting. Freezes a runqueue
I periodic accounting. Freezes the whole scheduler!

I in Credit2 we have:
I “global”lock only for load balancing

(looking at improving it)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 26 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why (cont. IV)

In general, more advanced, a lot of potential:

I historical load based load balancing

I runqueue kept in order of credit (instead than Round-Robin as
in Credit1)

I configurable runqueue arrangement

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 27 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why (cont. V)

Performance?

Some tweaks still missing, but really promising:

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 28 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why (cont. V)

Performance? Some tweaks still missing, but really promising:

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 28 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Credit2: Why (cont. V)

Performance? Some tweaks still missing, but really promising:

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 28 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Driver Domain Aware Scheduling

Suppose:

I vCPU x is top priority (higher credits, whatever)

I vCPU x issues an I/O operation. It has some remaining
timeslice (or credit, or whatever) available, but it blocks
waiting for results

I some other domains’ vCPUs y , w and z have higher priority
than I/O’s vCPUs (Dom0 or driver domain)

Schedule: vx , vy , vw , vz , vdrv dom −→ only now vx can resume

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 29 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Driver Domain Aware Scheduling

Suppose:

I vCPU x is top priority (higher credits, whatever)

I vCPU x issues an I/O operation. It has some remaining
timeslice (or credit, or whatever) available, but it blocks
waiting for results

I some other domains’ vCPUs y , w and z have higher priority
than I/O’s vCPUs (Dom0 or driver domain)

Schedule: vx , vy , vw , vz , vdrv dom −→ only now vx can resume

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 29 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Driver Domain Aware Scheduling (cont.)

What if, vx could donate its timeslice to the entity that is blocking
it?

Schedule: vx , vdrv dom, vx , vw , vz −→ vx unblocks right away
(this, assuming servicing I/O to be quick, and does not even
exhaust vx timeslice)

I avoids priority inversion (no, we’re not the Mars Pathfinder,
but still...)

I makes vx sort of “pay”, from the CPU load it generates with
its I/O requests (fairness++)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 30 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Driver Domain Aware Scheduling (cont.)

What if, vx could donate its timeslice to the entity that is blocking
it?

Schedule: vx , vdrv dom, vx , vw , vz −→ vx unblocks right away
(this, assuming servicing I/O to be quick, and does not even
exhaust vx timeslice)

I avoids priority inversion (no, we’re not the Mars Pathfinder,
but still...)

I makes vx sort of “pay”, from the CPU load it generates with
its I/O requests (fairness++)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 30 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Driver Domain Aware Scheduling (cont.)

What if, vx could donate its timeslice to the entity that is blocking
it?

Schedule: vx , vdrv dom, vx , vw , vz −→ vx unblocks right away
(this, assuming servicing I/O to be quick, and does not even
exhaust vx timeslice)

I avoids priority inversion (no, we’re not the Mars Pathfinder,
but still...)

I makes vx sort of “pay”, from the CPU load it generates with
its I/O requests (fairness++)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 30 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Conclusions

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 31 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Conclusions

Scheduling: we probably are doing fine...

Maybe at least not too
bad?

However:

I we should assess whether that is the case or not (for as many
workloads as we possibly can)

I even if yes, we should do even better!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 32 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Conclusions

Scheduling: we probably are doing fine... Maybe at least not too
bad?

However:

I we should assess whether that is the case or not (for as many
workloads as we possibly can)

I even if yes, we should do even better!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 32 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Conclusions

Scheduling: we probably are doing fine... Maybe at least not too
bad?

However:

I we should assess whether that is the case or not (for as many
workloads as we possibly can)

I even if yes, we should do even better!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 32 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Conclusions

Scheduling: we probably are doing fine... Maybe at least not too
bad?

However:

I we should assess whether that is the case or not (for as many
workloads as we possibly can)

I even if yes,

we should do even better!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 32 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Conclusions

Scheduling: we probably are doing fine... Maybe at least not too
bad?

However:

I we should assess whether that is the case or not (for as many
workloads as we possibly can)

I even if yes, we should do even better!

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 32 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Q&A

Thanks again,

Questions?

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 33 / 33


	Introduction
	hello

	Sched. in Virt.
	virtscheduling

	Scheduler Features
	affinity

	Workin' On
	newfeatures

	Conclusions
	conclusion


