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Introduction
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Welcome

I Hello, my name is Dario

I I’m with Citrix since 2011 (in the Xen Platform Team)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 3 / 33



Introduction Sched. in Virt. Scheduler Features Workin’ On Conclusions

Welcome (cont.)

Not often around here in 101... Because I work from home!
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A bit of a Background (Check ;-)

I Computer Engineering MSc → Ph.D on Real-Time Scheduling

I Scheduling already... but OS scheduling!

I What about virtualization:

“I’m not a virtualization kind of guy.
I think virtualization is evil”[*]

[*] a well known benevolent dictator
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Me and Scheduling

I Not too good at nonsensical math

I Focused on implementing Real-Time scheduling algo-s in
real-world OSes, such as Linux

I Tried to implement Earliest Deadline First (EDF) algorithm
and have it merged upstream

I Attempted by ’academicians’ a few times, just to blame the
Linux community upon failure!
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Me and Scheduling (cont.)

I Real-Time scheduling: “a solution to the wrong problem”:
I most of the time, there even is no overbooking
I when there’s overbooking, not all activities are equally

important
I I/O is a bigger issue

I And in fact, one day in Boston, while presenting my work at
the 2010 Kernel Summit...

“Real-Time is bul1$*it!”[*]

[*]the same well known benevolent dictator as before
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Scheduling in Xen’s World
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Scheduling and Xen

I There is pretty much always overbooking

I All activities (i.e., all VMs) are (or at least could be) equally
important

...

I I/O is still more important!
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Wait a Second...

We are special!

I Xen is not a GPOS which can be turned into an hypervisor

I Xen’s scheduler needs to deal only with VMs’ vCPUs

“I already told you, this isn’t ever going to happen.

You do NOT put a for each online cpu() loop in the

middle of schedule().

You also do not call stop one cpu(migration cpu stop)

in schedule to force migrate the task you just

scheduled to away from this cpu.

That’s retarded.

Nacked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>”
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Wait a Second... (cont.)

Our I/O needs (CPU) scheduling!

Xen Hypervisor

Hardware

device model
(qemu)

toolstack

Control Domain
NetBSD or Linux

Hardware
Drivers

I/O Devices CPU Memory

Paravirtualized
(PV)

Domain:
NetBSD or Linux

netback
blkback

netfront
blkfront

Driver Domain

netback
blkback

Xen Hypervisor

Hardware

device model
(qemu)

toolstack

Control Domain
NetBSD or Linux

Hardware
Drivers

I/O Devices CPU Memory

Paravirtualized
(PV)

Domain:
NetBSD or Linux

Fully 
Virtualized

(HVM)
Domain:
Windows,
FreeBSD...

netback
blkback

netfront
blkfront
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Xen’s Scheduler Features
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Hard and Soft Affinity

I pinning: you can run there and only there!
#xl vcpu-pin vm1 0 2

I hard affinity: you can’t run outside of that spot
# xl vcpu-pin vm1 all 8-12

I soft affinity: you can’t run outside of that spot and,
preferably, you should ru there
# xl vcpu-pin vm1 all - 10,11

Same achieved with cpus= and cpus soft= in config file.

cpus= or cpus soft= in config file control where memory is
allocated
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Hard and Soft Affinity (cont.)
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for Dom0

I dom0 max vcpu: makes sense

I dom0 vcpus pin: bleah!!
I dom0 nodes: new parameter. Place Dom0’s vCPUs and

memory on one or more nodes
I strict (default) uses hard affinity
I relaxed uses soft affinity
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More about NUMA

Automatic placement policy in libxl (since Xen 4.2)

I acts at domain creation time
I easy to tweak (at libxl build time, for now) heuristics:

I use the smallest possible set of nodes (ideally, just one)
I use the (set of) node(s) with fewer vCPUs bound to it ([will]

consider both hard and soft affinity)
I use the (set of) node(s) with the most free RAM (mimics the

“worst fit”algorithm)

Example:
4 GB VM, 6 GB free on node0, 8 GB free on node1
Bound vCPUs: 12 to node0, 16 to node1 =⇒ use node0
Bound vCPUs: 8 to node0, 8 to node1 =⇒ use node1

Coming: node distances, IONUMA, vNUMA
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Workin’ On
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Exploiting Intel PSR

Intel Platform Shared Resource Monitoring (PSR):
I Cache Monitoring Technology (CMT)
I Memory Bandwidth Monitoring (MBM)

Tells how much cache/mem. bandwidth is being consumed by a
certain ’activity’ running on a CPU. E.g., about CMT:

I https://software.intel.com/en-us/blogs/2014/06/18/

benefit-of-cache-monitoring

I https://software.intel.com/en-us/blogs/2014/12/11/

intels-cache-monitoring-technology-use-models-and-data

Cool, eh? Oh, well:
I moderately accurate and fast:

hey, it’s done in hardware after all! :-)
I limited in scope and not very flexible:

heh, it’s done in hardware after all! :-(

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 18 / 33
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Exploiting Intel PSR (cont.)

Current CMT support:

I in Linux (and hence KVM): cache usage stats for tasks and
group of tasks

I in Xen: cache usage stats for domains (http://wiki.
xenproject.org/wiki/Intel_Cache_Monitoring_Technology)

Can it be used in more clever ways, e.g., in the scheduler?

I in Linux: Yes... as soon as hell freezes!

I in Xen: Yes! (Or, at least, nothing stops us trying)
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Exploiting Intel PSR (cont. II)

Biggest limitations:

I num. of activitieas that can be monitored is limited

I applies to L3 cache only, for now

What would be desirable:

I per-vCPU granularity =⇒ No! Too few monitoring IDs

I L2 occupancy/bandwidth stats, for helping intra-socket
scheduling decisions =⇒ No! Only L3

What I’m thinking to:
I use one monitoring ID per pCPU. This gives:

I how ’cache hungry’ a pCPU is being
I how much free chace there is on each socket/NUMA node

I sample periodically and use for mid-level load balancing
decisions

I ... ideas welcome!!
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Credit2

Credit2 scheduler, authored by George, is still in experimental
status.

Take it out from there!!

What’s missing:

I SMT awareness (done, missing final touches)

I hard and soft affinity support (someone working on it)

I tweaks and optimization in the load balancer (someone
looking at it)

I cap and reservation (!!!)

Plan: mark it as !experimantal for 4.6, make it default for 4.7
(let’s see...)
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Credit2: Why?

Schedulers do age: as they grow old, they tend to grow “hacks”

I Seen with the Linux scheduler:
I Once upon a time, there was the O(1) scheduler, then...
I Once upon a time (again!), there was CFS, then...

I Less true with Credit... still:
I CSCHED PRI TS BOOST sort of falls into this
I any addition, at this stage, would fall into this (e.g., load

balancing based on historical load)

Cambridge – 27th of May, 2015 Scheduling in Xen: Present and Near Future 22 / 33
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Credit2: Why? (cont.)

Complexity:

I in Credit we have:
I credits and weights
I 2 priorities
I oh, actually, it’s 3
I active and non active state of vCPUs
I flipping between active/non-active means flipping between

burning/non-burning credits, which in turns means wandering
around among priorities

I in Credit2 we have:
I credits burned basing on weights
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Credit2: Why? (cont. II)

Complexity (II):
I in Credit we have:

I credits-per-msec, timeslice, ticks-per-timeslice
I can we change the timeslice? Yes, of course... in theory!

I in Credit2 we have:
I no timeslice at all (just min-timer, max-timer)
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Credit2: Why? (cont. II)

Complexity (an example): start time

in Credit we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time += (credits * MILLISECS(1)) / CSCHED CREDITS PER MSEC;

scurr->start time -= now;

snext->start time += now;

snext->start time += now;

in Credit2 we have:
s time t start time; /* When we were scheduled (used for credit) */

svc->start time = now;

delta = now - svc->start time;

svc->start time = now;

snext->start time = now;
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Credit2: Why? (cont. III)

Scalability:

I in Credit
I periodic runqueue sorting. Freezes a runqueue
I periodic accounting. Freezes the whole scheduler!

I in Credit2 we have:
I “global”lock only for load balancing

(looking at improving it)
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Credit2: Why (cont. IV)

In general, more advanced, a lot of potential:

I historical load based load balancing

I runqueue kept in order of credit (instead than Round-Robin as
in Credit1)

I configurable runqueue arrangement
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Credit2: Why (cont. V)

Performance?

Some tweaks still missing, but really promising:
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Credit2: Why (cont. V)

Performance? Some tweaks still missing, but really promising:
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Driver Domain Aware Scheduling

Suppose:

I vCPU x is top priority (higher credits, whatever)

I vCPU x issues an I/O operation. It has some remaining
timeslice (or credit, or whatever) available, but it blocks
waiting for results

I some other domains’ vCPUs y , w and z have higher priority
than I/O’s vCPUs (Dom0 or driver domain)

Schedule: vx , vy , vw , vz , vdrv dom −→ only now vx can resume
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Driver Domain Aware Scheduling (cont.)

What if, vx could donate its timeslice to the entity that is blocking
it?

Schedule: vx , vdrv dom, vx , vw , vz −→ vx unblocks right away
(this, assuming servicing I/O to be quick, and does not even
exhaust vx timeslice)

I avoids priority inversion (no, we’re not the Mars Pathfinder,
but still...)

I makes vx sort of “pay”, from the CPU load it generates with
its I/O requests (fairness++)
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Conclusions
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Conclusions

Scheduling: we probably are doing fine...

Maybe at least not too
bad?

However:

I we should assess whether that is the case or not (for as many
workloads as we possibly can)

I even if yes, we should do even better!
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Q&A

Thanks again,

Questions?
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