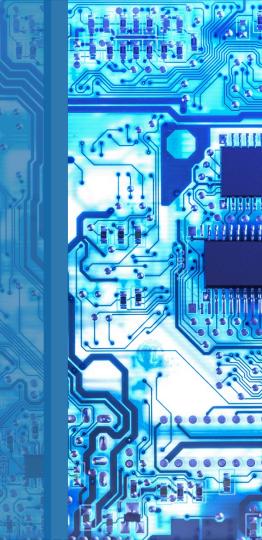
Securing Embedded Systems with the Hypervisor

Lars Kurth Community Manager, Xen Project Chairman, Xen Project Advisory Board Director, Open Source, Citrix

www.slideshare.net/xen_com_mgr/presentations & xenbits.xenproject.org/people/larsk

Why Virtualize in Embedded Systems?

Consolidation


Reduce cost, size, weight and power consumption Reduce development costs: platform independence

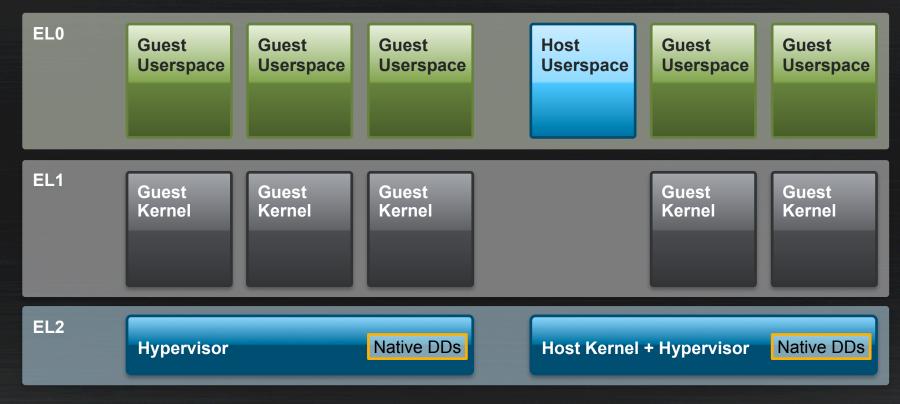
Security and Safety

Separate safety critical apps from general apps Safety Certification of the Hypervisor

Embedded Requirements

Minimal IRQ latency Low or 0 scheduling overhead Drivers for special I/O devices Flexible architecture

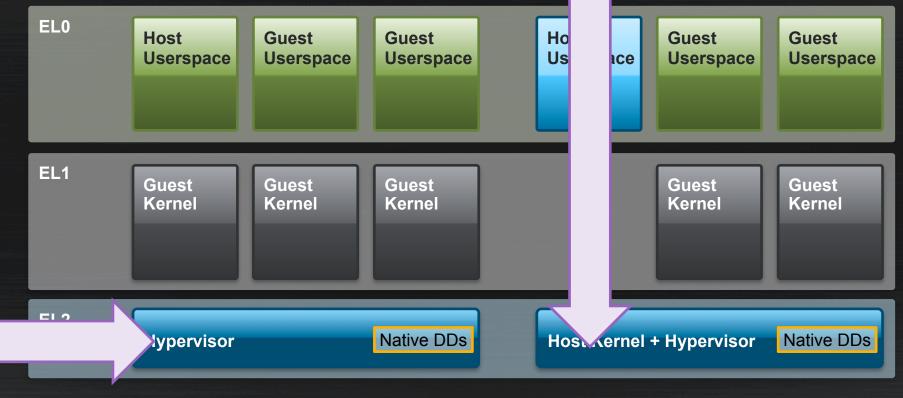
Hypervisor Architectures


ARM Exception/Privilege Levels

EL0/PL0 least privileged mode used for applications (user mode)

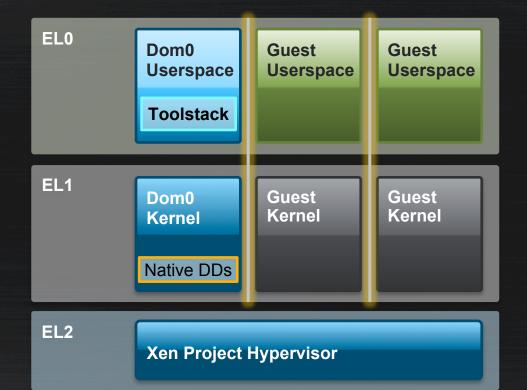
EL1/PL1 privileged mode used for running kernels such as the Linux kernel

EL2/PL2 This has a higher level of privilege and can be used to run a hypervisor which takes control of the system and can host multiple "guest" operating systems


Type 1 & 2 Hypervisors on ARM

Traditional Embedded Type 1 Hypervisor

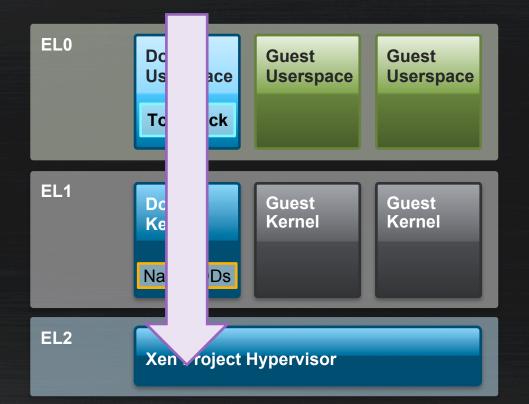
Type 2 with VHE/ARMv8.1 (e.g. KVM)


System Control Plane

Traditional Embedded Type 1 Hypervisor

Type 2 with VHE/ARMv8.1 (e.g. KVM)

Xen Project: Type 1 with a twist

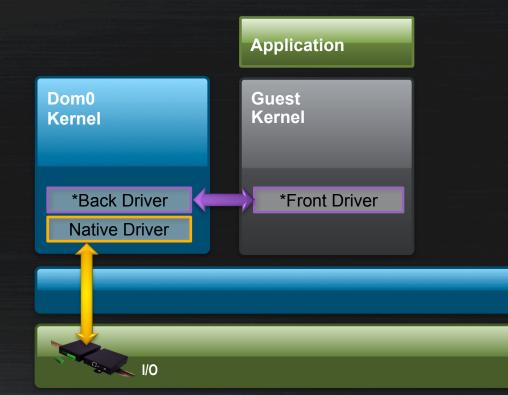


Strong Isolation Device Drivers run in EL1, not EL2

Protected Address Spaces: *Grant tables*

Trusted Computing Base (TCB)

Xen: Type 1 with a twist


Control Plane Server: sysadmin

Embedded: config/setup, system health monitoring (watchdog), maintenance, SW updates, ...

PV Drivers and Protocols for various use-cases

PV Drivers: I/O in Xen

HW

Xen Project Hypervisor

Existing net, block, console keyboard, mouse, USB framebuffer, *GPU sharing**

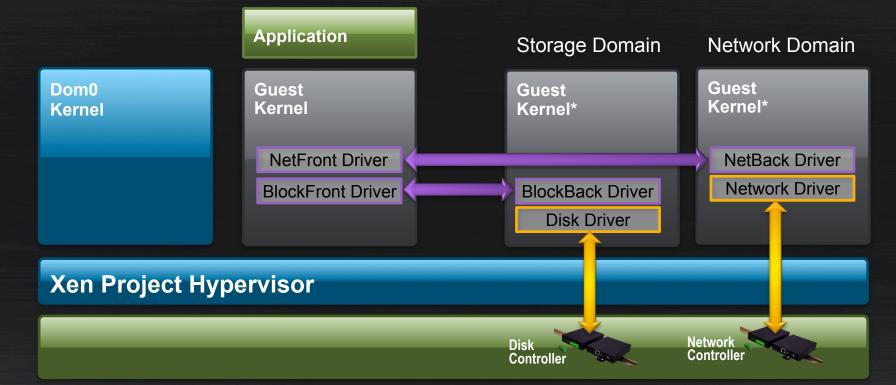
New in Xen 4.9 9pfs (share a filesystem between VMs) Pvcalls (forward POSIX calls across VMs) multitouch, sound, display, DRM

Developing New Ones Easy to write (GPL and BSD samples) Kernel and User Space

^{*)} A number of different approaches by different vendors in different market segments are being deployed, which are PV-like, but not strictly a PV protocol

Security Properties of Xen

System Partitioning


Sandboxing drivers & system components Fine-grain control of VM capabilities Enables multi-layered security approach

Other Security Features Trusted Execution Environment (TEE) Virtual Machine Introspection, alt2pm Live Patching

More in my talk today at 14:55 Live Patching, Virtual Machine Introspection and Vulnerability Management

Sandboxing: Disaggregation

Driver Domain Guest OS*: Linux, BSD, MiniOS, unikernel, ...

XSM/FLASK Explained

VM

Fine-grained **policy**, controlling which hypervisor functionality is accessible to this (class of) VM

Effect: limit what an exploit in this VM could do

Attack Surface Reduction

Similar to Linux Security Modules/SELinux Same policy syntax as SELinux Different types, roles, users and attributes Same tools for policy compilation / verification (*checkpolicy*)

security Config Passthrough Inter-VM communication

Xen Project in Security Applications

return

If you want to know more ...

Documentation

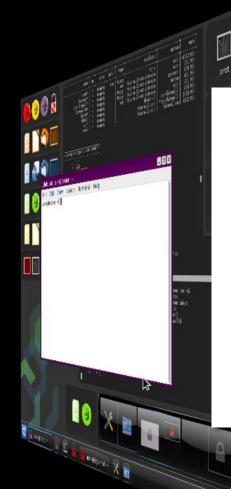
wiki.xenproject.org/wiki/Dom0_Disaggregation wiki.xenproject.org/wiki/Xen_Security_Modules_:_XSM-FLASK

Products & Projects

Qubes OS

www.qubes-os.org

Secure OS


OpenXT www.openxt.org

FOSS Platform for security research, security applications and embedded appliance integration building on Xen & OpenEmbedded

BAE SYSTEMS # als

Crucible:Defense starlab.io

Xen Project based virtualization platform for technology protection, cyber-hardening, and system integrity for aerospace & defense systems

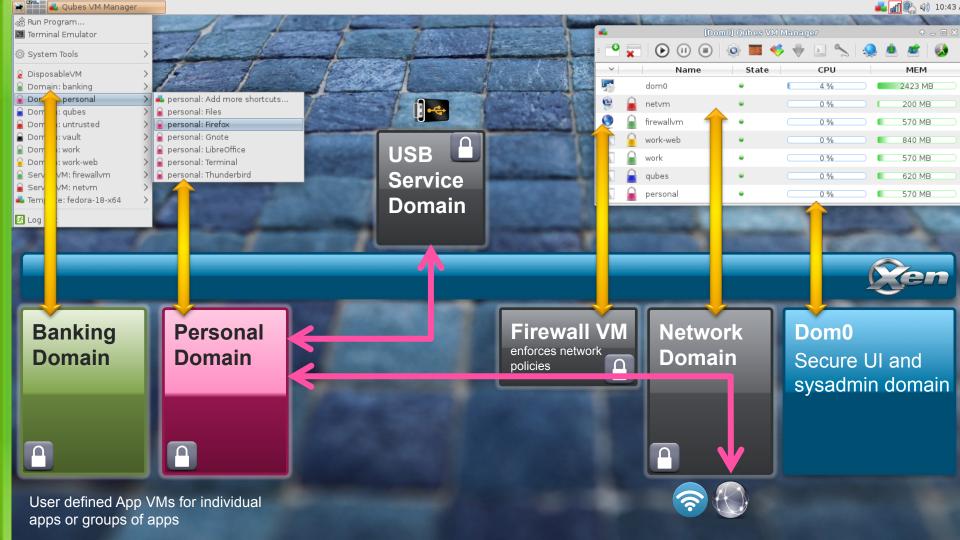
ati teologica Ministrativa anita

If you're serious about security, @QubesOS is the best OS available today. It's what I use, and free. Nobody does VM isolation better.

808

Qubes OS @QubesOS

Qubes OS 3.2 has been released!


qubes-os.org/news/2016/09/2...

RETWEETS LIKES 2,294 3,870

2:59 PM - 29 Sep 2016

♣ 151 ♣ 2.3K ♥ 3.9K

Xen Project in Embedded and Automotive

Embedded Vendors using Xen

Dornerworks dornerworks.com/xen

Consulting Xen Embedded Distros

Xen for Xilinx Zynq Xen for NXP i.MX 8

ARLX Hypervisor DO-178 (EAL6+), IEC 62304, ISO 26262 MILS EAL FACE, VICTORY, ARINC 653 Starlab starlab.io

Crucible and Crucible:Defense Xen embedded hypervisor In progress: DO-178, MILS EAL

Uses a minimal Dom0 using MiniOS, disaggregation and XSM/FLASK AIS ainfosec.com

BAE Systems baesystems.com

Galois galois.com

Maintain FreeRTOS Xen Port Developed and maintain HalVM

Precedents of military grade certification for Xen based systems

www.slideshare.net/xen_com_mgr/art-certification & www.youtube.com/watch?v=UyW5ul_1ct0 xenbits.xenproject.org/people/larsk/XPDS14 - Xen and the Art of Certification.pdf www.linux.com/news/xen-project/2017/2/how-shrink-attack-surfaces-hypervisor

Automotive Vendors using Xen

GlobalLogic Product: Nautilus bit.do/gl-nautilus

First product in production expected in Q1 2018

Supports:

HW: Renesas R-Car Gen2 & Gen3, TI Jacinto6, Intel Apollo Lake, Qualcomm 410C, Sinlinx A33

Guests: Linux up to 4.9 • Android M, N, N-Car • QNX, ThreadX, FreeRTOS

PV Drivers for: GPU, Audio, HW accelerated Video codecs, DRM, ...

Contributions:

27 smaller features from 2013 to 2016

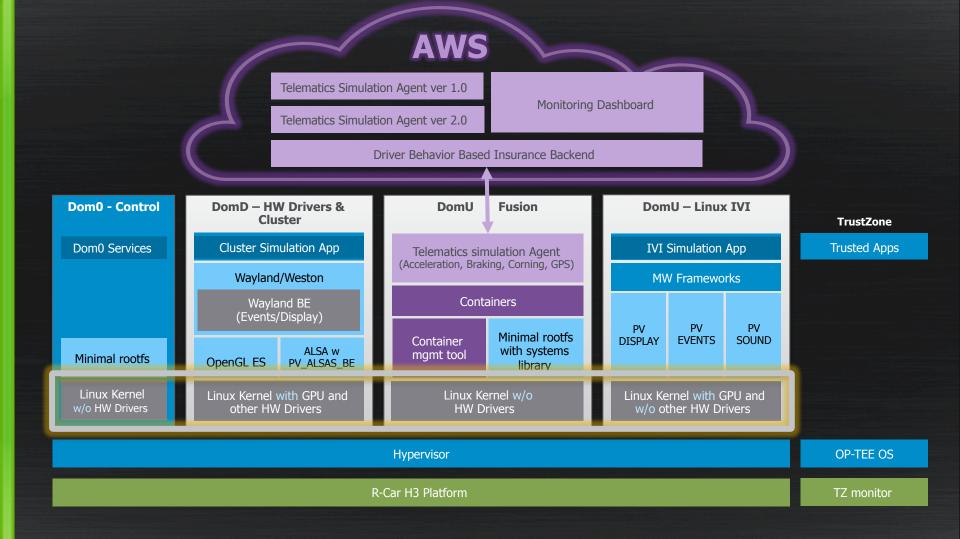
EPAM Demo Next slide

Interesting Features:

Container based telematics applications running in a Xen VM that can be downloaded from a cloud service

Ongoing Contributions:

ABIs for PV Sound, PV Display & PV DRM Leading development of co-processor sharing framework LG Electronics Demo bit.do/lg-xen-demo-2016

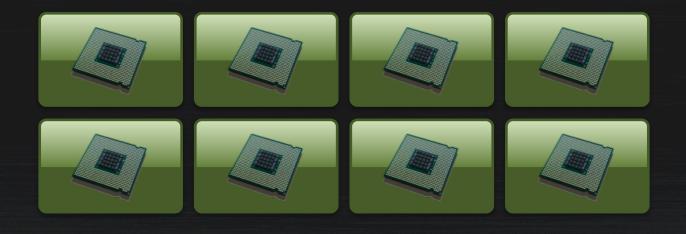

Bosch Car GmbH Contributions 10 smaller features in 2016

Perseus Founded by Xen maintainer bit.do/perseus-2017

Pratap Sankar @ Flickr

EPAM Cloud Fusion Demo

xenbits.xenproject.org/people/larsk/ LCC17 - The Internet of Transportation[1080P].MP4



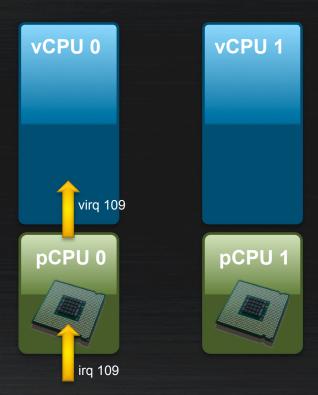
Schedulers & Interrupt Latency

Partitioning the System

Xen supports several different schedulers with different properties.

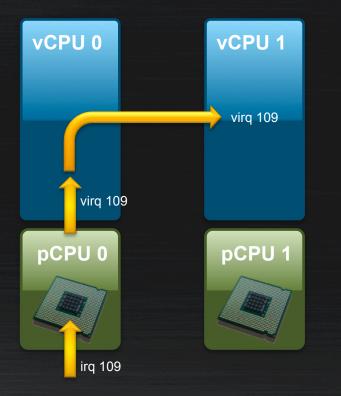
Partitioning the System

Xen supports several different schedulers with different properties.



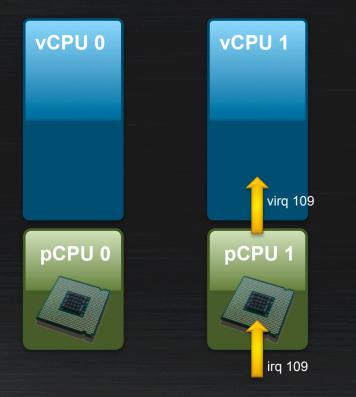
Dedicated to 1 VCPU via pinning and Null scheduler
 → no scheduler overheads

Xen Schedulers


Scheduler	Use-cases	Today	Future plans
Credit	General Purpose	Supported Default	Supported Optional
Credit 2	General Purpose Optimized for lower latency, higher VM density	Supported	Default
RTDS	Soft & Firm Real-time Multicore Embedded, Automotive, Graphics & Gaming in the Cloud, Low Latency Workloads	Experimental Better XL support <1µs granularity	Supported Hardening Optimization
ARINC 653	Hard Real-time Single core Avionics, Drones, Medical	Supported Compile time	
Null	Hard Real-time	Experimental	Supported

IRQs: Physical follows virtual

IRQ injection Always on the CPU running the vCPU


IRQs: Physical follows virtual

IF

vIRQ target changes or vCPU is moved THEN vIRQ is moved immediately

IRQs: Physical follows virtual

Xilinx ZynqMP board (four Cortex A53 cores, GICv2)

WARM_MAX (excluding the first 3 interrupts): <2000ns

Without Null scheduler See blog.xenproject.org/2017/03/20/xen-on-arminterrupt-latency/

IRQs always shadow the vIRQ

➔ minimizes latency

Why should I use Xen?

Picture by Lars Kurth

Extremely Flexible and Versatile Proven in many different markets Easy to port to new environments Easy to develop new PV drivers Highly customizable

Security and Resilience Isolation, Partitioning, Security Features

Safety

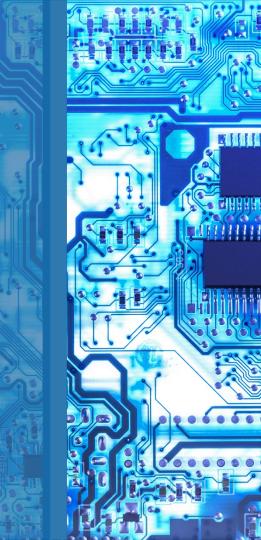
Examples of Military Grade Certification BUT: looking at ways to make this easier and cheaper

Challenges still being addressed Standardization of more I/O devices via PV protocols Standardization of GPU and co-processor sharing RTOS or other minimal OS as Dom0 Testing of embedded Hardware by the project

Ouestions

xenbits.xenproject.org/people/larsk

Picture by Lars Kurth


More Resources

Developer Portal: bit.do/xen-devs Xen on ARM whitepaper: bit.do/xenarm-white Xen on ARM wiki: bit.do/xenarm-wiki

Port Xen to a new SOC: bit.do/xenarm-porting Add Xen support Xen to your OS: bit.do/xenarm-os

Device Passthrough presentation: bit.do/xenarm-pt OE meta-virtualization Xen recipe: bit.do/xenmeta OpenXT (Xen + OpenEmbedded): openxt.org Xenbedded presentation: bit.do/xenbedded

Monthly ARM Community Call: bit.do/xenarm-call

Engage!

Lists and IRC on freenode: xen-devel@lists.xenproject.org xen-users@lists.xenproject.org #xenarm or #xen-devel

Xen Project Developer and Design Summit: July 11-13, Budapest, Hungary

