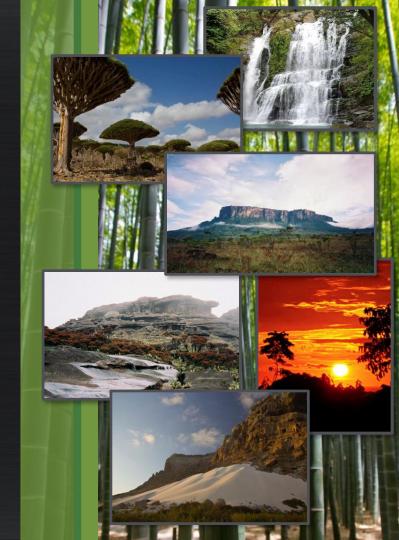
An Introduction to Xen Project Virtualization

Lars Kurth

Community Manager, Xen Project Chairman, Xen Project Advisory Board Director, Open Source, Citrix



About Me

Was a contributor to various projects

Worked in parallel computing, tools, mobile and now virtualization

Community guy for the Xen Project
Working for Citrix
Accountable to the Xen Project Community
Chairman of Xen Project Advisory Board

Why Virtualize?

Consolidation (Cut Costs)

Servers/Equipment, Cooling, Floor space

Faster provisioning

Flexibility_i

Less dependency on specific Hardware Co-existing OS environments

Increased uptime

Live migration, storage migration, fault tolerance, HA

Enhanced security

Strong Isolation

Architecture provides strong isolation *Grant tables*

System Partitioning

Disaggregation: sandboxing parts of the system Fine-grain control of VM capabilities

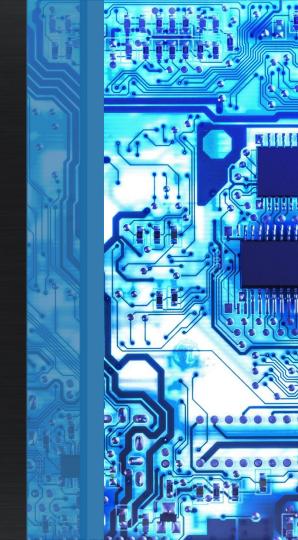
Secure I/O

Sandboxing disk, memory, etc. drivers

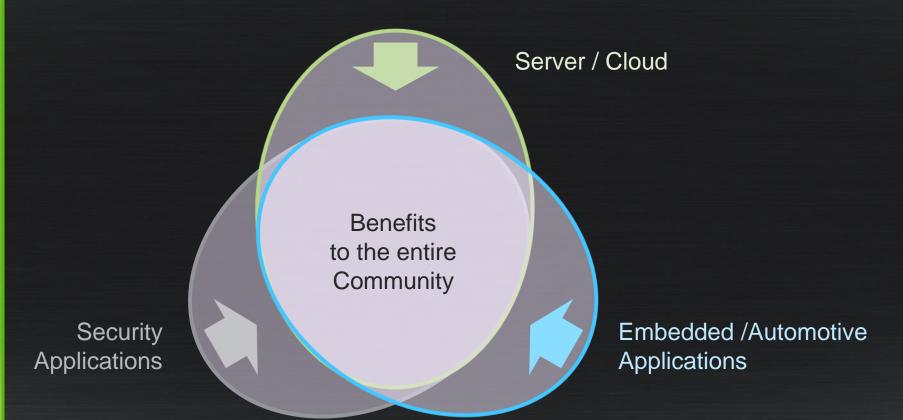
New classes of threat detection

Virtual Machine Introspection, alt2pm

Consolidation

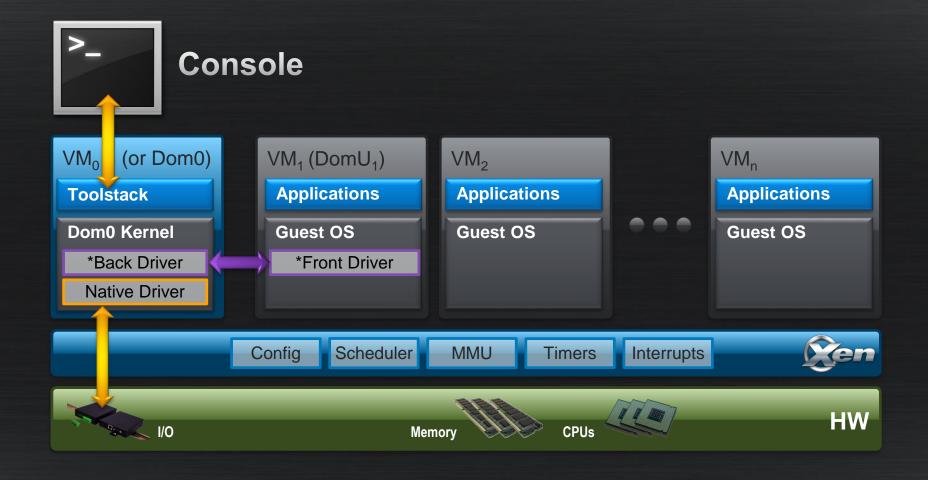

Single SoC Maintainability, BoM

Flexibility


Less dependency on specific Hardware Co-existing OS environments

Additional Requirements

Security requirements (same as on previous slide)
Minimal IRQ latency
Safety Certification
Low or 0 scheduling overhead
Drivers for special I/O devices


Increasing alignment of Needs

Xen, a type-1 Hypervisor with a twist

Introduction of key concepts

Dist and Network

Interrupts & Priviled and Instructions & Princers Book Oard, Schools of Card, Secretary Book Oard, Secretary Book

Windows

BSDs,

Shortcut	Mode	With				
HVM / Fully Virtualized	HVM		Qemu	Qemu	Qemu	HW
HVM + PV drivers	HVM	PV Drivers	PV	Qemu	Qemu	HW
PVHVM	HVM	PVHVM Drivers	PV	PV	Qemu	HW
PVH	PV	pvh=1	PV	PV	PV	HW
PV	PV		PV	PV	PV	PV
ARM	N/A		PV	PV	PV	HW

Why is PVH & PVH Dom 0 important?

ARM	N/A	PV	PV	PV	VH	
PVH	PV	PV	PV	PV	VH	
PV	PV	PV	PV	PV	Р	This is the most complex part of Xen today!

Simplicity: Less code & fewer Interfaces in Linux/FreeBSD

Security: smaller TCB and attack surface, fewer possible exploits

Clean-up: simplify Xen-Linux kernel, Xen-Any-OS interface

Better Performance & Lower Latency

Dom0 must be a PV guest: PVH allows us to run Dom0 as PVH guest

32 bit: PV guest kernels were run in ring 1, userspace in ring 3 (HW isolation)

64 bit: no ring 1 & 2 → kernel & user space must share ring 3 (TLB flushes)

Why PVH v2?

Remove Limitations, Simplicity, Code-sharing (ARM & HVM)

PVH v1 inherits all the **PV limitations**

Took the PV execution path and added HW support

Separate implementation to HVM: pass-through, APIC, APIC config, ACPI Restrictions: Paging restrictions (4K → 2M+), no access to emulated devices

PVH v2

Reimplementation that Behaves exactly like PVH (minus restrictions) Uses the same interfaces and execution path as Xen on ARM Reuses much more HVM code than PVH v1 No dependency on QEMU

www.slideshare.net/xen_com_mgr/towards-a-hvmlike-dom0-for-xen

Virtualization Modes: Future

Shortcut	Mode	With
HVM / Fully Virtualized	HVM	
HVM + PV drivers	HVM	PV Drivers
PVHVM	HVM	PVHVM Drivers
PVH v2	PV	pvh=1
DV	DV	
1 V	I V	
ARM	N/A	

2017

Complete PVH v2 for Dom0 and DomU Add capability to run classic unmodified PV kernels, in an HVM or PVH v2 domain.

Later: Deprecate PV

With a view to removing PV mode and thus simplifying Linux / BSD / ... - Xen interface

Server Virtualization & Cloud Computing

Recent and upcoming developments

The gears of the Cloud

Large User Base >10M Users

Powers the largest clouds in production

Commercial Xen based products from Citrix Huawei

Inspur

Oracle

Live Patching

A tale of improved collaboration within the Xen Project Community

Why did we develop Live Patching?

Affected AWS, Rackspace, IBM SoftLayer and many others Deploying security patches may require reboots; Inconveniences users

How did we fix this?

2015: Design with input from AWS, Alibaba, Citrix, Oracle and SUSE Replace functions while running (old with new) in a payload Stackable payloads can be applied and removed

2016: Xen 4.7 came with Live Patching for x86

2016: Xen 4.8 added extra x86 use-cases and ARM support

2017: XenServer 7.1 releases Live Patching in first commercial product

. . .

If you want to know more ...

Specification & Status

xenbits.xen.org/docs/unstable/misc/livepatch.html wiki.xenproject.org/wiki/LivePatch

Presentations, Videos, Demos

bit.do/live-patch-detailed-ppt bit.do/live-patch-detailed-video

bit.do/live-patch-short-ppt bit.do/live-patch-short-video

Virtual Machine Introspection

A new way to protect against malware

Enablers: from xenaccess/xenprobes to LibVMI

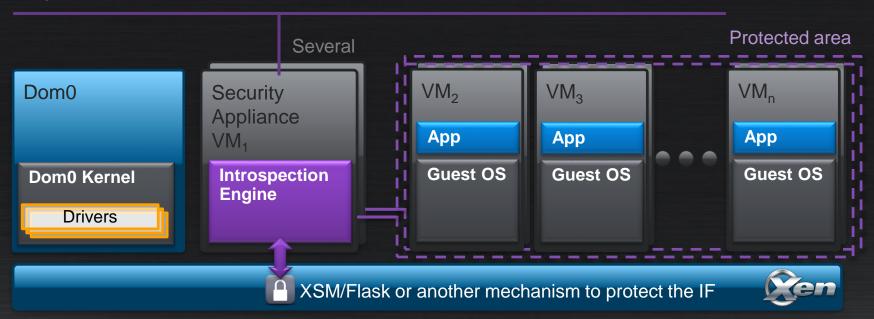
Interesting research topic
Originally used for forensics (too intrusive for server virt)

VMI: enabling commercial applications Hardware assisted VMI solves the intrusion problem Collaboration between: Zentific, Citrix, BitDefender, Intel and others

Products

AIS Introvirt, BitDefender Hypervisor Introspection, Zentific Zazen

Traditional Cloud Security



A new model for Cloud Security?

Uses HW extensions to monitor memory (e.g. Intel EPT) → Low Intrusion Register rules with Xen to trap on and inspect suspicious activities (e.g. execution of memory on the dynamic heap)

Protection against attack techniques

All malware need an attack technique to gain a foothold Attack techniques exploit specific software bugs/vulnerability

The number of available attack techniques is small Buffer Overflows, Heap Sprays, Code Injection, API Hooking, ...

Because VMI protects against attack techniques It can protect against entirely new malware

Verified to block these advanced attacks in real-time APT28, Energetic Bear, DarkHotel, Epic Turla, Regin, ZeuS, Dyreza, ... solely by relying on VMI

Protection against rootkits & APTs

Rootkits & APTs

Exploit 0-days in Operating Systems/System Software Can disable agent based security solutions (mask their own existence)

VMI solutions operate from outside the VM Thus, it cannot be disabled using traditional attack vectors

BUT:

VMI is not a replacement, for traditional security solutions It is an extra tool that can be used to increase protection

If you want to know more ...

Documentation

wiki.xenproject.org/wiki/Virtual_Machine_Introspection

Products

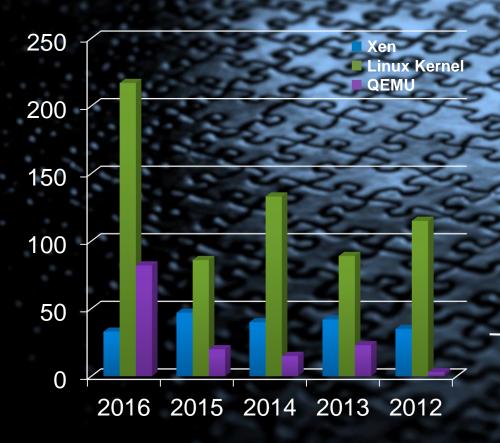
AIS Introvirt

XenServer www.ainfosec.com

BitDefender HVI

XenServer www.bitdefender.com

Protection & Remedial Monitoring & Admin


Zentific Zazen (Apr 17)

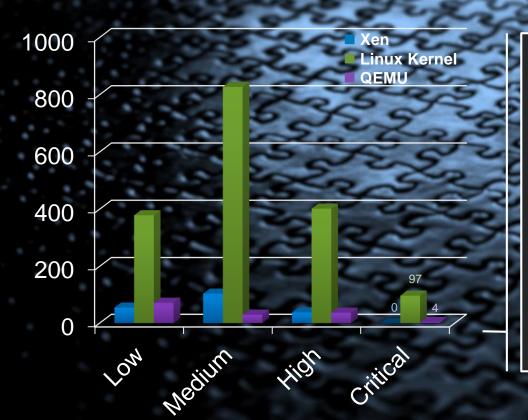
Xen & XenServer & ... www.zentific.com

Protection & Remedial Monitoring & Admin Forensics & Data gathering Malware analysis

How secure is the Xen Project Hypervisor really?

All CVE's (change time)

2015+


Active initiatives to find bugs XTF to help find bugs Fuzzing of some components

Very few ARM issues

2016: 2/33 2015: 6/47

Does not use QEMU

CVE's by CVSS Severity

Average CSSV Scores

Xen: 4.7

Linux Kernel: 5.9

QEMU: 4.3

Known 0-Day Exploits

Xen: 0

Linux Kernel: 18

QEMU: 0

Vulnerability Process Comparison

	Team	Process	Туре	CVEs	Days ¹	Who? ²	For Severity ³
Xen Hypervisor Includes Linux & QEMU vulnerabilities in supported Xen configurations	Yes	Yes	Responsible	Yes	14	D, S, P	All
OpenStack OSSA OpenStack OSSN	Yes Yes	Yes Yes	Responsible Full, post-fix	Yes No	3-5	D, S, P	> Low <= Low
Linux Kernel via OSS security distros OSS security	Yes Yes	Partly ⁴ Yes No	Responsible Full	Yes Some	14-19	D	> Low <= Low
QEMU ⁵ via OSS security distros OSS security	Yes	Partly ⁴	Responsible Full	Yes Some	14-19	D	> Low <= Low
Jailhouse	No	No					

¹⁾ Days embargoed

²⁾ D = Distros/Products, S = Public Service, P = Private

³⁾ Is the CVE severity used as cut-off for the process

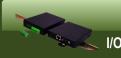
⁴⁾ No own pre-disclosure list

⁵⁾ Only handles x86 KVM bugs, no own pre-disclosure list

XTF: Testing API behavior

In essence a unikernel per test, with fewer safeguards in place to allow for easy testing of corner cases

Also used for Vulnerability Investigation and Testing



hypercalls

evtchn

gnttab

x86 emulator

Summary on Security

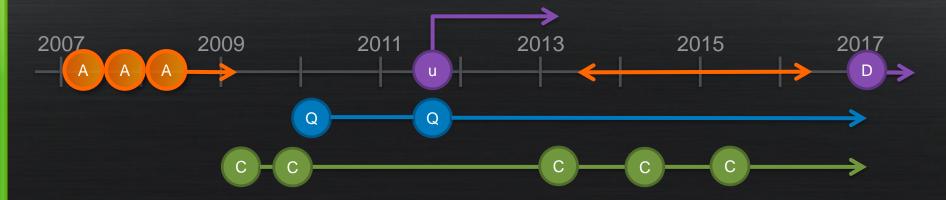
Track Record

81% of Vulnerabilities Low and Medium Average severity of vulnerabilities getting lower

Hardening Activities

Security Audits by Cloud and Product Vendors Testing (fuzzing, XTF, code inspection, ...)

Industry Leading Vulnerability Process Includes QEMU and Kernel XSAs Designed with input from Cloud Providers


Isolation

Limits impact of exploits

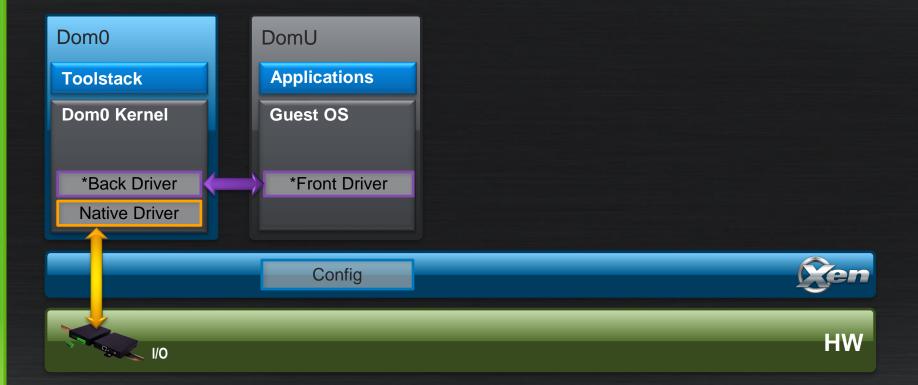
Xen Project in Security Applications

Technology enablers: XSM, vTPM & TXT, Disaggregation & Driver Domains

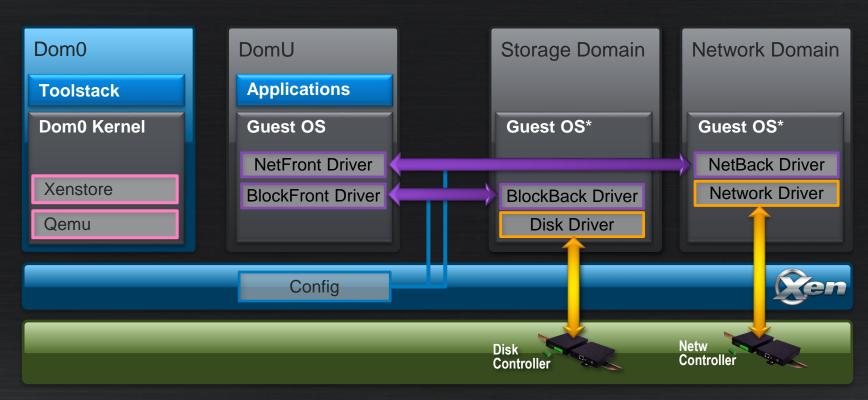
Qubes OS Architecture, Qubes OS 1.0, ...

2009: Project Independence (Intel / Citrix)

2010: XenClient 1.0 2013: XenClient XT

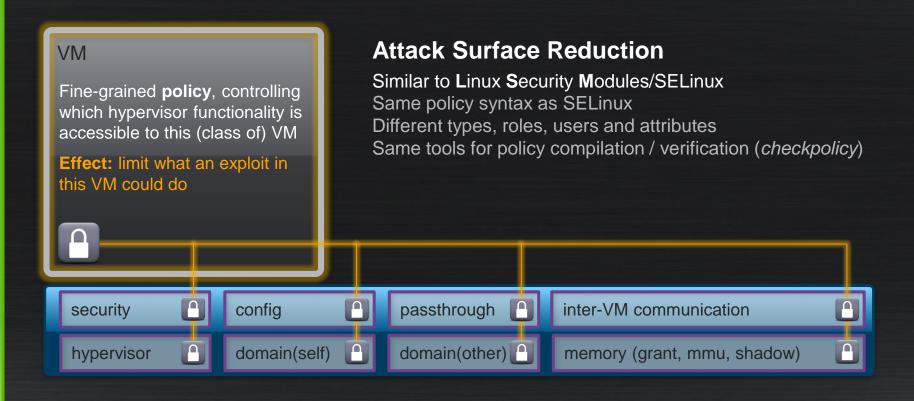

2014: Became OpenXT (BAE Systems, Assured Information Security)

2015: Support for Cell Phones, Tablets and Embedded Devices

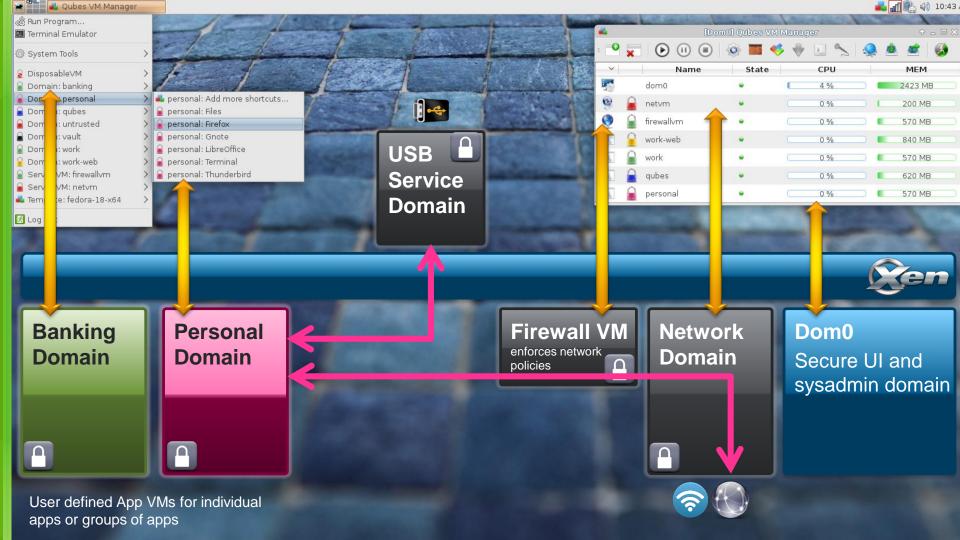

uXen (Bromium) – Windows only, thus never made it upstream

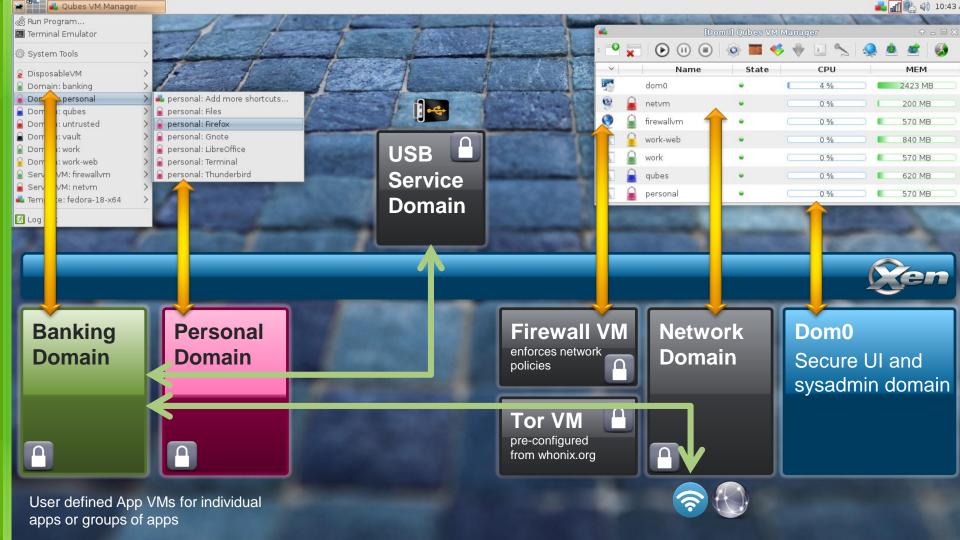
Crucible:Defense

Disaggregation Explained



Disaggregation Explained




Driver Domain Guest OS*: Linux, BSD, MiniOS, unikernel, ...

XSM/FLASK Explained

If you want to know more ...

Documentation

wiki.xenproject.org/wiki/Dom0_Disaggregation wiki.xenproject.org/wiki/Xen_Security_Modules_:_XSM-FLASK

Products & Projects

Qubes OS

www.qubes-os.org

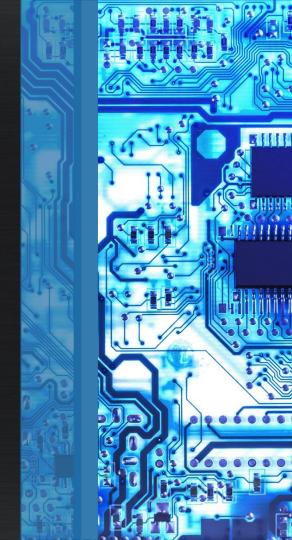
Secure OS

OpenXT

www.openxt.org

FOSS Platform for security research, security application and embedded appliance integration building on Xen & OpenEmbedded

BAE SYSTEMS



Crucible:Defense

starlab.io

Xen Project based virtualization platform for technology protection, cyber-hardening, and system integrity for aerospace & defense systems

Xen Project in Embedded

Vendors Active in the Community

Dornerworks

dornerworks.com/xen

Consulting
Xen Embedded Distros

Xen for Xilinx Zynq Xen for NXP i.MX 8

ARLX Hypervisor DO-178 (EAL6+), IEC 62304, ISO 26262 MILS EAL FACE, VICTORY, ARINC 653

Starlab

starlab.io

Crucible and Crucible:Defense Xen embedded hypervisor In progress: DO-178, MILS EAL

Uses a minimal Dom0 using MiniOS, disaggregation and XSM/FLASK

AIS

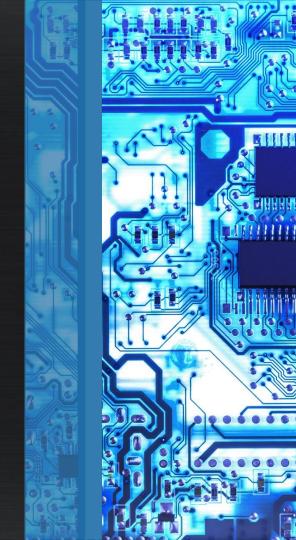
ainfosec.com

BAE Systems

baesystems.com

Galois

galois.com

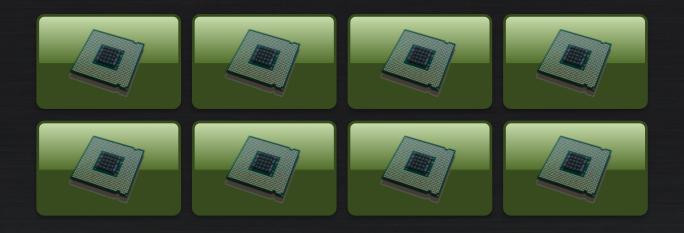

Maintain FreeRTOS Xen Port Developed and maintain HalVM

Precedents of military grade certification for Xen based systems

www.slideshare.net/xen_com_mgr/art-certification & www.youtube.com/watch?v=UyW5ul_1ct0 www.linux.com/news/xen-project/2017/2/how-shrink-attack-surfaces-hypervisor

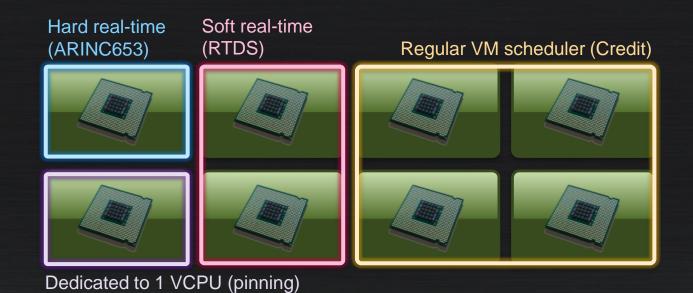
Additional Requirements

Security requirements
Safety certification
Low or 0 scheduling overhead
Minimal IRQ latency
Drivers for special I/O devices



Schedulers & Interrupt Latency

Partitioning the System


Xen supports **several different** schedulers with different properties.

Partitioning the System

→ no scheduler overheads

Xen supports **several different** schedulers with different properties.

Xen Schedulers

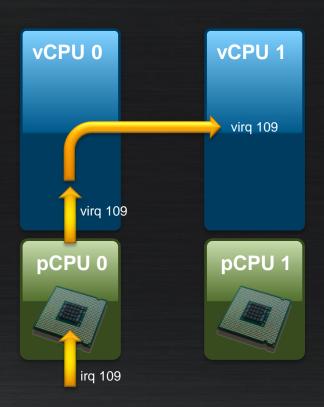
Scheduler	Use-cases	Xen 4.7	Plans for 4.8+
Credit	General Purpose	Supported Default	Supported Optional
Credit 2	General Purpose Optimized for lower latency, higher VM density	Supported	Default
RTDS	Soft & Firm Real-time Multicore Embedded, Automotive, Graphics & Gaming in the Cloud, Low Latency Workloads	Experimental Better XL support <1µs granularity	Supported (4.9+) Hardening Optimization
ARINC 653	Hard Real-time Single core Avionics, Drones, Medical	Supported Compile time	

Legend:

Likely in 4.8 Possible in 4.8

Example: Xilinx Zynq XenZynq

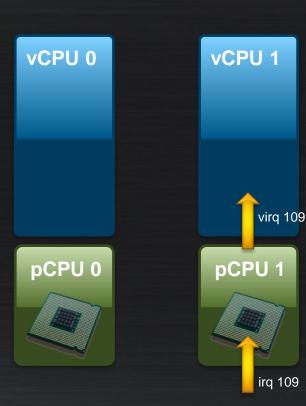
dornerworks.com/wp-content/uploads/2017/01/Xen-Zynq-Distribution-XZD-Users-Manual.pdf


IRQs: Physical follows virtual

IRQ injection

Always on the CPU running the vCPU

IRQs: Physical follows virtual


IF

vIRQ target changes or vCPU is moved

THEN

vIRQ is moved immediately

IRQs: Physical follows virtual

Xilinx ZynqMP board (four Cortex A53 cores, GICv2)

WARM_MAX (excluding the first 3 interrupts): <2000ns marc.info/?l=xen-devel&m=148778423725945 marc.info/?l=xen-devel&m=148839743820338

IRQs always shadow the vIRQ

minimizes latency

ARM IRQs: no maintenance interrupts

IRQ received by DomU

DomU performs EOI

The guest kernel issues an "EOI" at the end of the interrupt service routine, to notify the HW that the IRQ handling is finished.

No maintenance IRQ

Additional context switch to handle EOI.

Use EOI support in HW to directly EOI the physical IRQ

PV Drivers and Protocols for various use-cases

Existing

net, block, console keyboard, mouse, USB framebuffer, XenGT

New

9pfs PVCalls MultiTouch, Sound, Display

Developing New Ones

Easy to write (GPL and BSD samples)
Kernel and User Space

Xen Project in Automotive

Vehicles are becoming the ultimate mobile device

Vendors that we know use Xen

GlobalLogic

Product: Nautilus

bit.do/gl-nautilus

First product in production expected in Q1 2018

Supports:

HW: Renesas R-Car Gen2 & Gen3, TI Jacinto6, Intel Apollo Lake, Qualcomm 410C, Sinlinx A33

Guests: Linux up to 4.9 • Android M, N, N-Car • QNX, ThreadX, FreeRTOS

PV Drivers for: GPU, Audio, HW accelerated Video codecs, DRM, ...

Contributions:

27 smaller features from 2013 to 2016

EPAM

Demo

youtube.com/watch?v=jMmz1odBZb8

Interesting Features:

Container based telematics applications running in a Xen VM that can be downloaded from a cloud service

Ongoing Contributions:

ABIs for PV Sound, PV Display & PV DRM

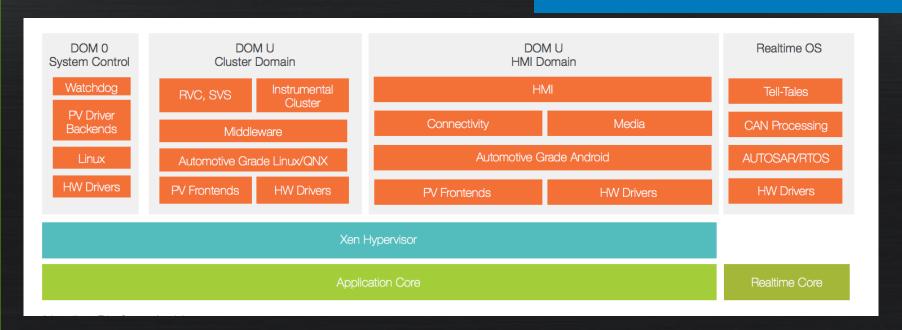
LG Electronics

Demo

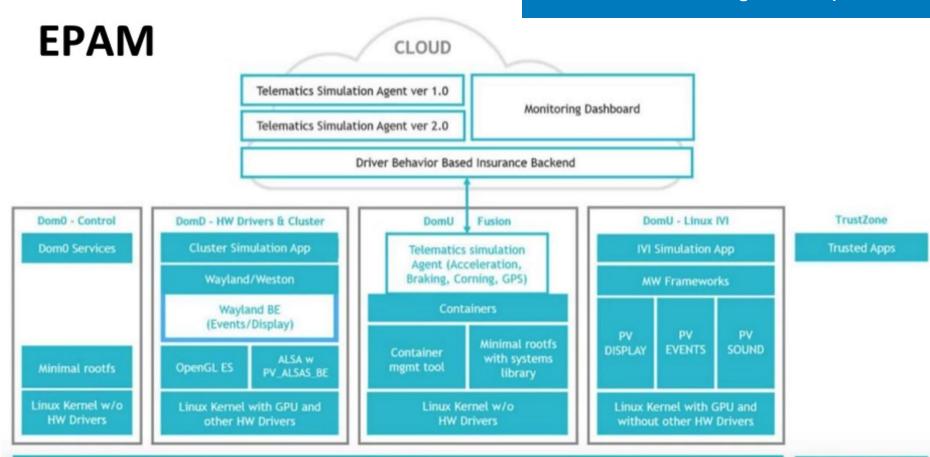
bit.do/lg-xen-demo-2016

Bosch Car GmbH

Contributions


10 smaller features in 2016

Perseus


Founded by Xen maintainer

bit.do/perseus-2017

TODO: Need a higher res picture

TODO: Need a higher res picture

A diverse, vibrant and growing community

Hypervisor Git Commits

2015: Hypervisor Stack Top Players

Top:

Star Lab

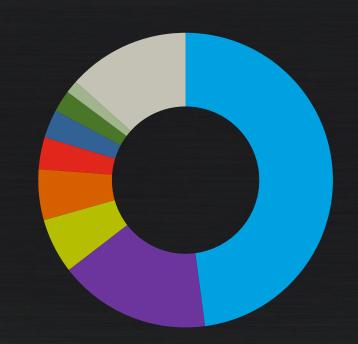
Other

 Citrix
 48%

 Suse
 17%

 Oracle
 6%

 Intel
 6%


 Red Hat
 4%

 Linaro
 3%

 FreeBSD
 2%

1%

13%

Others:

Fujitsu

Invisible Things Lab

BitDefender

Huawei

Zentific

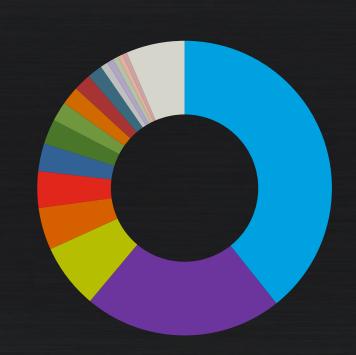
Verizon

Cavium

GlobalLogic

NSA

...


2016: Hypervisor Stack Top Players

Top:

Other

Citrix 39% Suse 22% Oracle 7% ARM 5% Red Hat 4% Linaro 3% 3% Intel Star Lab 2% **BSD** 2% Fujitsu 2% Bitdefender 2% Zentific 1% NSA 1% Zentific 1% Qualcomm 1% Huawei 1%

6%

First-time contributors in 2016:

ARM

Aporeto

Bosch Car Multimedia Gmbh

Netflix

Qualcomm

Xilinx

Why should I use Xen?

Extremely Flexible and Versatile Proven in different markets

Security and Resilience Isolation, Partitioning, Security Features Track record in handling

Safety Examples of Military Grade Certification

Portability and Flexibility
Easy to port to new environments
Easy to develop new PV drivers
Highly customizable

Vibrant and Diverse Community
Covering Server, Cloud, Security, Embedded, Automotive

More Resources (ARM Focus)

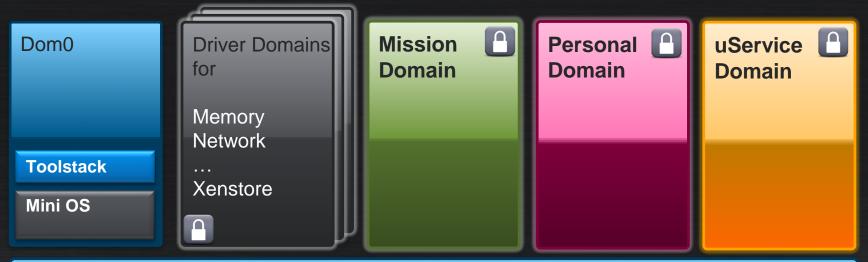
Port Xen to a new SOC: goo.gl/384aD8 Add Xen support Xen to your OS: goo.gl/3qgqcM

Xen on ARM whitepaper: goo.gl/TcuqXd Xen on ARM wiki: goo.gl/9qsfMf

Device Passthrough presentation: goo.gl/KM0f8c OE meta-virtualization Xen recipe: goo.gl/m7GuXR OpenXT (Xen + OpenEmbedded): openxt.org

Biweekly ARM Community Call: goo.gl/8ULYRn

Engage!


Xen devel ML: xen-devel@lists.xenproject.org Xen user ML: xen-users@lists.xenproject.org IRC on freenode: #xenarm or #xen-devel

Internships in 2017:
Google Summer of Code
Outreachy (Women and other groups)
wiki.xenproject.org/wiki/Category:Internships

Example Architecture: Crucible

Leave this put, as it does not add anything

